科研论文

返回至主页
  • Compound guidance law design based on infrared/millimetre wave detection information

    • 摘要:

      For the case of air-to-surface missile with guidance system composed of infrared system and millimeter wave system against ground targets, a new design scheme of nonlinear terminal guidance law with robustness is proposed. An engagement model in the pitch plane is formulated, in which states are chosen as relative distance and relative velocity, by combining the relative relationship between missile and target, where the information is obtained directly from the infrared system and millimeter wave system. By adopting the sliding mode control, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with the index of optimizing the relative distance. The stability of the closed-loop system is also proven by utilizing the Lyapunov stability theory. Finally an illustrative example of attacking a ground target is given to confirm the usefulness of the proposed design scheme.

    • 作者:

      Yang Yu-Bin;Tang Guo-Jian;Guo Jian-Guo;Zhou Jun;Bao Wei-Min

    • 刊名:

      Yuhang Xuebao Journal of Astronautics

    • 在线出版时间:

      2011

  • Computational challenge of fractional differential equations and the potential solutions: A survey

    • 摘要:

      © 2015 Chunye Gong et al. We present a survey of fractional differential equations and in particular of the computational cost for their numerical solutions from the view of computer science. The computational complexities of time fractional, space fractional, and space-time fractional equations are O(N2M), O(NM2), and O(NM(M + N)) compared with O(MN) for the classical partial differential equations with finite difference methods, where M, N are the number of space grid points and time steps. The potential solutions for this challenge include, but are not limited to, parallel computing, memory access optimization (fractional precomputing operator), short memory principle, fast Fourier transform (FFT) based solutions, alternating direction implicit method, multigrid method, and preconditioner technology. The relationships of these solutions for both space fractional derivative and time fractional derivative are discussed. The authors pointed out that the technologies of parallel computing should be regarded as a basic method to overcome this challenge, and some attention should be paid to the fractional killer applications, high performance iteration methods, high order schemes, and Monte Carlo methods. Since the computation of fractional equations with high dimension and variable order is even heavier, the researchers from the area of mathematics and computer science have opportunity to invent cornerstones in the area of fractional calculus.

    • 作者:

      Gong Chunye;Bao Weimin;Tang Guojian;Liu Jie;Jiang Yuewen

    • 刊名:

      Mathematical Problems in Engineering

    • 在线出版时间:

      2015

  • Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    • 摘要:

      © 2015 The Authors. In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM) powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO) and uncertainty-based design optimization (UDO) are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS) and Kriging-based Taylor series approximation (KTSA), are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

    • 作者:

      Zhu Hao;Tian Hui;Cai Guobiao;Bao Weimin

    • 刊名:

      Chinese Journal of Aeronautics

    • 在线出版时间:

      2015

  • A Doppler shift estimation method for x-ray pulsar based navigation

    • 摘要:

      © 2015, Editorial Dept. of JA. All right reserved. When a spacecraft moves toward or away from the X-ray pulsars, Doppler effects are present in the pulsar signal measured by onboard X-ray detectors. By measuring the observed pulsar frequency, the speed of the spacecraft along the line of sight of the pulsar can be derived. The mathematical model is established to characterize the spacecraft's velocity estimation by adopting the time of arrival of X-ray photons. To improve the accuracy of Doppler frequency estimation, a robust averaging technique, RANSAC, is introduced to combine with the χ2statistical method. Besides, the priori information of the spacecraft velocity is utilized to improve the computational efficiency. The Crab pulsar data observed by RXTE satellite are applied to validate the presented method and some dominating error factors are analyzed. The results demonstrate that the method can track the spacecraft's velocity effectively. For RXTE satellite with the orbit altitude 570 km, in terms of the obvious changes in spacecraft's acceleration, the velocity estimation error along the line of sight of the pulsar is about ±150 m/s, and the corresponding acceleration estimation error is ±0.5 m/s2.

    • 作者:

      Sun Hai-Feng;Bao Wei-Min;Xue Meng-Fan;Fang Hai-Yan;Li Xiao-Ping

    • 刊名:

      Yuhang Xuebao Journal of Astronautics

    • 在线出版时间:

      2015

  • Sun sensor using a nanosatellites solar panels by means of time-division multiplexing

    • 摘要:

      © The Institution of Engineering and Technology. The solar vector, which defines the angle between the satellite and the Sun, is an important parameter for attitude control of a nanosatellite. It is highly desirable to enable accurate attitude control of a nanosatellite without increasing size and mass. To solve this issue, this study presents a novel sun sensor based on solar panel time-division multiplexing. The mathematical relationship between the short-circuit current of the solar panel and the solar vector is derived, and a mathematical model of the time-division multiplexing for the sensor is introduced. A sample of the sensor is built and an experiment is conducted to obtain the short-circuit current data for different angles. The output of the sensor is included in the mathematical model to obtain the solar vector. The relevant measurement errors of the sensor is also derived. The results show that the sensor is capable of measuring across the 0-180° range with a maximum absolute error of measurement of 4.531° and a relative error of 2.517%.

    • 作者:

      L\u00fc Xiaozhou;Tao Yebo;Xie Kai;Li Xiaoping;Wang Songlin;Bao Weimin;Chen Renjie

    • 刊名:

      Iet Science Measurement and Technology

    • 在线出版时间:

      2017

  • Clustered multi-task learning for automatic radar target recognition

    • 摘要:

      © 2017 by the authors. Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms.

    • 作者:

      Li Cong;Bao Weimin;Xu Luping;Zhang Hua

    • 刊名:

      Sensors Switzerland

    • 在线出版时间:

      2017

  • A Novel Proximity Sensor Based on Parallel Plate Capacitance

    • 摘要:

      © 2001-2012 IEEE. The proximity sensor plays an important role in recognition, positioning, tracking, and avoiding of obstacles in robot movement. The existing proximity sensors cannot identify the direction and measure the distance of the approaching object simultaneously. In order to solve mentioned problem, this paper presents a novel proximity sensor based on parallel plate capacitance. The proposed proximity sensor adopts the structure wherein driving electrode and sensing electrodes are located on the same plane. The number of driving electrodes differs from the number of sensing electrodes, and sensing electrodes are symmetrically distributed around the driving electrode. In this paper, we developed the circuit model of the proximity sensor based on parallel plate capacitance, and analyzed the influence of the guard ring on sensor sensitivity. We also designed a new sensor structure, which employs four sensing electrodes to identify direction of the approaching object. In addition, the proximity sensor performances in terms of direction identification were verified by experiments, and both sensing errors and sensor repeatability were calculated. The experimental results have shown that proposed proximity sensor can distinguish four different directions and measure the object distance in the range of 1 40 mm simultaneously. The sensing errors were less than 5% and the repeatability error was 1.05%.

    • 作者:

      Lu Xiaozhou;Li Xi;Zhang Feng;Wang Songlin;Xue Dongfeng;Qi Liang;Wang Hui;Li Xiaoping;Bao Weimin;Chen Renjie

    • 刊名:

      IEEE Sensors Journal

    • 在线出版时间:

      2018

  • Multiple kernel learning via orthogonal neighborhood preserving projection and maximum margin criterion method for synthetic aperture radar target recognition

    • 摘要:

      © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). A multiple kernel learning (MKL) method is proposed for synthetic aperture radar (SAR) target recognition. The goal of the proposed MKL is to learn an optimal combined kernel to reduce the dimensionality of SAR images and maximize the separability of SAR targets. Orthogonal neighborhood-preserving projection (ONPP) can effectively reduce the sample dimensionality and maximally preserve the structure information but without the discrimination. On the contrary, maximum margin criterion (MMC) has the ability of classification but without the ability of preserving structure information. To realize the proposed goal, ONPP and MMC are combined within the graph embedding framework, where an optimal projective direction and basic kernel weights are automatically learned. Based on the obtained projection direction and kernel weights, all basic kernels are projected to generate the composite kernel. Moreover, the projection and transformation operations are based on three-dimensional (3-D) data generated by a series of basic kernel matrices, which can completely preserve the structure information in reproducing kernel Hilbert space. Numerical experiments on MSTAR dataset indicate that the proposed MKL method can effectively reduce the dimensionality of SAR images and achieve the outstanding recognition performance when compared with several state-of-The-Art algorithms.

    • 作者:

      Li Cong;Bao Weimin;Xu Luping;Zhang Hua;Yan Bo

    • 刊名:

      Optical Engineering

    • 在线出版时间:

      2018

  • Effects of channel thickness on structure and transport properties of AlGaN/InGaN heterostructures grown by pulsed metal organic chemical vapor deposition

    • 摘要:

      © 2018 High-quality AlGaN/InGaN heterostructures are grown and the effects of InGaN channel thickness on the structure and transport properties are investigated. With the increase of InGaN channel thickness from 7 nm to 28 nm, the two-dimensional electron gas density decreases continuously, while the mobility shows a trend of increasing at first, and then decreasing. The optimum thickness of 21 nm is obtained for the In 0.05 Ga 0.95 N channel, achieving a high electron mobility of 1712 cm 2 /V, which indicates the huge potential for InGaN channel heterostructures in high-frequency and high-power applications. The variation in transport properties is studied by analyzing the structure formation, material quality, and interface characteristic in detail. The results are not only beneficial for the further study of the InGaN channel heterostructures, but also instructive for the other inserted channel system.

    • 作者:

      Zhang Yachao;Xu Shengrui;Zhang Tao;Zhang Jincheng;Hao Yue;Wang Zhizhe;Bao Weimin;Huang Jun

    • 刊名:

      Materials Research Bulletin

    • 在线出版时间:

      2018

  • Three-Dimensional Interfacial Stress Sensor Based on Graphene Foam

    • 摘要:

      © 2001-2012 IEEE. The measurement of pressure is one of the most important functions of the artificial skin. In general, most of the pressure is not only coupled with the vertical normal interfacial stress ( Z-direction) but also the parallel shear interfacial stress ( X-and Y-direction). It is very important to develop a sensor to measure the 3-D interfacial stress. This paper presents a 3-D interfacial stress sensor based on graphene foams and super-elastic materials. A data-fitted measurement model is constructed to calculate the 3-D interfacial stress. The sensor is measured by utilizing a resistive measurement circuit, and experiments are performed with a 3-D stress simulation system. Results show that the fabricated sensor is capable of measuring the normal stress at a range of 0-50 kPa with a sensitivity of 0.0270 kPa -1 and the shear stress at a range of 0-25 kPa with a sensitivity of 0.0169 kPa -1 . The response time of the sensor is 80 ms, which is less than the human response time. By taking advantage of the graphene foam, our sensor has a high sensitivity, good stability, and has potential application in the fields of artificial skin, intelligent robot, wearable electronics, and prosthetics.

    • 作者:

      Yang Jiayi;Li Xiaoping;Lu Xiaozhou;Bao Weimin;Chen Renjie

    • 刊名:

      IEEE Sensors Journal

    • 在线出版时间:

      2018

共5页 转到