直播回放 | 电子科技大学、东京大学等三位专家讲述生物传感器及其应用

发布时间: 2024-04-02

直播时间:2024年4月2日(周二)20:00-22:00

直播链接:请点击链接进入直播间

嘉宾介绍:

朱佳,电子科技大学材料与能源学院助理教授

实时、非破坏性、连续监测人体生理参数对于健康管理与疾病治疗具有重要临床意义。最新的柔性电子技术结合了优异的机械柔性与电学性能,是实现这一目标的最可行的方案之一。尽管近些年来柔性电子技术取得了巨大的进度,但是非破坏性、连续监测生物液体中微量生化标记仍然是一个巨大的挑战。在此次报告中,我将重点介绍用于体液中生化标记物监测的柔性电化学传感器的设计策略,包括使用高电化学活性的多孔材料与金属氧化物薄膜。为了实现生化传感器柔性化,我们创新地引入极具规模化生产的激光加工工艺与大面积薄膜转印技术。通过引入场效应传感与放大机制,我们将柔性电化学传感器的监测极限从微摩尔提升至纳摩尔级别。总的来说,我们专注于材料科学与生物工程的前沿交叉融合并研制创新的柔性电化学传感器,将其应用于可视化临床医疗,帮助重大疾病的早期诊断与治疗。

戴立嘉,中国台湾阳明交通大学电机与电脑工程系的助理教授

奈米枝晶结构在电化学传感器中越来越受欢迎。然而,在短时间内产生 3D 模型来理解传感器的结构和功能之间的关系仍然不多。在这里,我们提供了一个 3D 模型建构的方法,藉以理解生长在生物电子装置上的奈米树枝状的金属(奈米金枝)结构。此方法是透过合并两个二维的奈米金枝资讯来实现的,其中包括来自电子扫描显微镜 (SEM) 的俯视图影像,和来自蒙特卡罗模拟的侧视图。显微镜的影像提供了调整蒙特卡罗模拟以建立 3D 奈米金枝的边界条件。我们透过比较此模型预测的奈米金枝面积密度与显微镜影像计算的奈米金枝面积密度,来验证此 3D 模型的有效性。由此调整 3D 模型中的参数,可帮助我们找到最佳化的奈米金枝密度 (影响灵敏度的指标之一)。此模型的成功,提供了一种透过奈米金枝生长,来了解电子装置灵敏度之优化上限的方法,而不需要耗时的传感器制造和测试。此外,我们的 SEM 引导的蒙特卡罗技术,提供了与实验拍摄之影像非常相似的奈米金枝模型。这方法可望在未来生物传感器设计时,对于 3D 形态的研究发挥有效的功用。

Seiichi Ohta,东京大学工程创新研究所生物工程系、化学系统工程系副教授

包括核酸和蛋白质在内的生物大分子直接反映了我们的健康状况。与疾病相关的特定生物大分子被称为生物标志物,是疾病诊断和健康监测的目标。为了检测和监测这些生物分子,纳米粒子因其纳米尺寸而表现出特定的光学功能,已被公认为一种强有力的工具。例如,金纳米粒子因局部表面等离子共振而呈现出强烈的红色。这些纳米粒子光学功能的一个独特之处是,其光学特性会随着相邻粒子位置的变化而变化。例如,由等离子体耦合引起的色移和由佛斯特共振能量转移引起的荧光淬灭。为了充分利用这些纳米粒子功能,我们开发了 DNA 介导的纳米粒子组装技术。通过使用 DNA 作为功能连接体,纳米粒子可以组装成具有精确控制间距和定位的超结构。在特定生物标记物的刺激下,这些纳米粒子组装体的结构会发生改变,从而可以通过光学特性的变化对其进行检测。在本讲座中,我们将介绍基于这种纳米粒子组装平台的核酸和蛋白质生物标记物检测的最新成果。

(来源:科学网)