项目的背景及目的
作为特型机器人的一种,微操作机器人因其具有系统位移精度高,定位精密,操作精密等特性,将人们的工作空间从宏观领域拓展到了细微空间领域。用于生物工程中的微操作机器人系统,可以代替人工完成生物实验中常见的细胞级显微操作(转基因微注射,染色体切割,细胞分离,细胞融合等)。
技术原理与工艺流程
因为生物和医学试验中的显微操作过程是对生物细微体,如生物细胞、染色体等活性物质进行显微操作。这些物体的几何尺度都在微米或亚微米的数量级,在宏观环境中观察不到。所以显微操作的全部工作都要在显微镜下进行,为了便于操作,还应该有足够的空间能够放置生物培养皿,满足微操作工具的运动和装卸工作,所以能够完成这种显微操作的微操作机器人系统的主体是一台倒置的生物显微镜。完成对生物细微体显微操作的部件是两套结构对称的、分别位于主体显微镜两侧的三维高精度运动平台。为了提高系统的自动化程度和对环境的适应性,对显微镜的结构作了修改,将原来手动调节的载物平台运动改装成电动控制运动,将显微镜焦距调节由手动改为电动调节。这样显微镜部分的所有运动都实现了电动控制,可以在计算机控制下完成多种形式的运动。
主要技术性能指标
微操作手臂的可移动范围是20mm,运动精度为1μm,三个结构相同的平台可以组合成做空间三维运动的平台组,其操作空间范围是20mm×20mm×20mm,每一方向的操作精度是1μm。
技术水平
本项目得到7项国家“863”计划项目支持, 授权专利号 ZL97121702.5,获2002年度国家技术发明奖(二等奖)。
应用前景分析及效益预测
应用行业 1.生物工程 2.医学工程
用显微操作装置对细胞进行解剖手术、人工受精、细胞核移植、基因注入、细胞内微量注射、胚胎切割等的技术。显微操作术在核质关系、基因表达、胚胎发育机制等的研究中具有重要意义。对这种显微操作技术的掌握与应用的程度,也是衡量一个国家生物、医学研究、生物工程技术发展与应用的重要标志之一。
目前,国内绝大部分使用价格昂贵进口设备。要使微操作应用普及的话,就必须使操作设备国产化,所以应用前景还是很好的。如果得到普及的话,每年需求约在百台以上。
该项目成果可以用于生物工程中的微操作机器人系统,代替人工完成生物实验中常见的细胞级显微操作,开展转基因微注射,染色体切割,细胞分离,细胞融合等。技术原理与工艺流程因为生物和医学试验中的显微操作过程是对生物细微体,如生物细胞、染色体等活性物质进行显微操作。在医学、生物、化学等领域有极大的应用价值。
南开大学是国家教育部直属重点综合性大学,是敬爱的周恩来总理的母校。南开大学由严修、张伯苓秉承教育救国理念创办,肇始于1904年,成立于1919年。改革开放以来,天津对外贸易学院、中国旅游管理干部学院相继并入,经教育部与天津市共建支持,学校发展成为国家“211工程”和“985工程”重点建设的综合性研究型大学。2017年9月,入选国家42所世界一流大学建设高校,且为36所A类高校之一。
该机器人系统在纳米尺度下的系统建模方法、三维纳观力获取与感知及误差分析与补偿方面有很多突破与创新,达到世界先进水平。在项目研究中,团队实现了SPM纳米扫描运动机理和机器人监控系统技术的结合;建立了纳米尺度下的物体运动学与动力学分析与模型,探针三维受力形变分析与解耦方法;实现了传感器信息实时采集与处理、力/视觉反馈与人机交互控制、基于人工/自然标志的位置反馈控制方法等一系列关键技术,使机器人的操作控制精度达到纳米级,在512像素区,重复定位误差小于5个像素,精度达1%以上;在移动纳米碳管的操作中,重复定位精度达到30 nm;而在基于路标的定位测试中,其定位误差小于4 nm。该机器人在纳米尺度的可观测、可控操作能力可以广泛适用于纳米材料的力、电、化学特性科学实验研究、生物工程与医学实验研究、微纳米科研教学等领域,在IC工业中纳米器件的装配与加工方面更是有良好的应用前景。
本项目可以采用技术转让、技术合作等多种形式进行对接,欢迎有需求的企业单位联系洽谈。