您所在的位置: 成果库 一种显著性检测中的深度图可信度检测方法

一种显著性检测中的深度图可信度检测方法

成果类型:: 发明专利

发布时间: 2022-05-08 10:55:10

科技成果产业化落地方案
方案提交机构:浙江省温州市| 姚情秘 | 2022-12-11 19:57:16

本发明公开了一种显著性检测中的深度图可信度检测方法。该方法具体包括以下步骤:判断待测深度图像的收敛性;B)对收敛的深度图像做中值滤波处理;C)对中值滤波处理后的深度图像及其参考图像进行边缘检测,并获取边缘信息;D)计算深度图像及其参考图像的边缘的相似度,获得可信度分数。该方法引入图像收敛性概念,过滤显著物体不明显的深度图像,在提取边缘特征前进行中值滤波处理,通过自适应阈值的边缘检测,在像素级别上求取深度图像和参考图像的相似度,使深度图像显著物体的边缘定位更准确,不会受到边缘附近区块因失真等原因导致的数值变化的影响,获得的深度图像的可信度结果更为准确。

该方法引入图像收敛性概念,过滤显著物体不明显的深度图像,在提取边缘特征前进行中值滤波处理,通过自适应阈值的边缘检测,在像素级别上求取深度图像和参考图像的相似度,使深度图像显著物体的边缘定位更准确,不会受到边缘附近区块因失真等原因导致的数值变化的影响,获得的深度图像的可信度结果更为准确。

现有深度图可信度检测技术中缺少对深度图像的预处理,在噪声较为明显的场景中损失边缘信息。且在处理复杂场景下的深度图时,显著目标不明显而不利于后续的显著性检测。

本发明属于视频图像处理技术领域,具体涉及一种显著性检测中的深度图可信度检测方法。

模仿人类视觉机制进行的显著性区域检测是计算机视觉领域的热门研究内容之一。视觉注意力机制可以帮助人类快速地识别视觉显著区域,进而从大量复杂的视觉信息中获取有价值的内容。

周洋:2020年7月于吉林大学取得理学博士学位,同年9月进入温州大学化材学院,依托浙江省碳材料技术研究重点实验室,主要开展锂硫电池、硅碳负极,固态电解质,锌离子电池等新能源材料的合成、机理及应用研究。先后主持浙江省自然科学基金青年基金项目,广东省先进储能材料重点实验室开放课题等纵向课题,以第一作者或通讯者在***, Energy Storage Mater., Nano Energy, ACS Nano, Small, ***, ***, Nanoscale等国际权威期刊上发表SCI论文10余篇,其中影响因子>10以上6篇,热点论文1篇,高被引论文4篇,授权发明专利4项。

该方法根据熵值的不同引入图像收敛性概念,过滤显著物体不明显的深度图像,在提取边缘特征前进行中值滤波处理,通过自适应阈值的边缘检测,在像素级别上求取深度图像和参考图像的相似度,本发明的实质性效果是:深度图像显著物体的边缘定位更准确,不会受到边缘附近区块因失真等原因导致的数值变化的影响,从而获得的深度图像的可信度结果更为准确。

技术合作,遣派学者专家到国外或者其他地区的高校,研究机构或者生产企业与对方的学者,专家合作进行研究设计,或者双方学者,专家轮流到对方学校,研究机构或者企业进行研究。