一种基于深度神经网络的快速视频编码方法
发布时间: 2022-05-08
基本信息
本发明公开了一种基于深度神经网络的快速视频编码方法。本发明包括基于深度神经网络的CU划分模块、基于邻域相关性的PU模式选择模块;CU块在帧内编码时会先经过PU模式选择计算率失真代价,此时先利用基于邻域相关性的PU模式选择模块进行优化,通过轻量级HCT模型的预测结果来减少RDO计算的候选模式数量;PU模式选择结束后,编码器会进行CU块深度判决,判断该CU块是否进行划分,此时由基于深度神经网络的CU划分模块进行优化,从HCT模型获得预测结果来判断是否提前终止划分。否则继续向下划分子CU块,并继续进行PU模式选择和CU块划分判决。本发明降低了CU递归划分的复杂度,简化了帧内预测模式的选择过程,有效地提高了HEVC编码的时间效率。